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Chemical kinetics conserves mass and renders nonnegative solutions; a good nu-
merical simulation would ideally produce mass-balanced, positive concentration vec-
tors. Many time-stepping methods are mass conservative; however, unconditional
positivity restricts the order of a traditional method to one. The projection method
presented in this paper ensures mass conservation and positivity. First, a numerical
approximation is computed with one step of a mass-preserving traditional scheme. If
there are negative components, the nearest vector in the reaction simplex is found by
solving a quadratic optimization problem; this vector is shown to better approximate
the true solution. A simpler version involves just one projection step and stabilizes
the reaction simplex. This technique works best when the underlying time-stepping
scheme favors positivity. Projected methods are more accurate than clipping and
allow larger time steps for kinetic systems which are unstable outside the positive
quadrant. c© 2001 Academic Press
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gration; quadratic optimization.

1. INTRODUCTION

Air-quality models [3, 11] solve the convection–diffusion reaction set of partial differ-
ential equations which describe the atmospheric physical and chemical processes. Usually
an operator-split approach is taken: chemical equations and convection–diffusion equations
are solved in alternative steps. In this setting the integration of chemical kinetic equations
is a demanding computational task. The chemical integration algorithm should be stable in
the presence of stiffness; ensure a modest level of accuracy, typically 1%; preserve mass;
and keep the concentrations positive.

Most popular ODE integrators (multistep, Runge–Kutta, Rosenbrock) preserve mass, but
positivity is more difficult to achieve. Clipping (setting the negative concentrations to zero)
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enhances stability but artificially adds mass to the system. There are numerical integration
methods that automatically preserve both mass and positivity, e.g., backward Euler [8].
However, as shown by Bolley and Crouzeix [2], positivity either restricts the order of the
method to one or restricts the step size to impractically small values.

A general analysis of conservation laws and the numerical solutions of ordinary differ-
ential equations are given by Shampine [13]. The author considers “perturbation methods”
where the computed solution is modified to satisfy exactly the desired invariants. The meth-
ods presented here belong to this “perturbation” category, but they are specific to systems
with linear equality and inequality invariants, e.g., chemical kinetic models. The main idea
can be directly extended to systems whose solutions remain within a convex set.

In this paper we try to alleviate the order and step-size restrictions that come with positiv-
ity. The solutions computed at each step by a standard integration method are “projected”
back onto the reaction simplex. The resulting vectors better approximate the true solution
itself (Lemma 4.1). The paper also presents a simpler, noniterative stabilization method. The
techniques developed are of theoretical interest as they produce mass-balanced and positive
solutions with high-order schemes and large step sizes. These techniques are of practical
interest for general chemical kinetic mechanisms, whenever nonlinearity makes negative
solutions unstable: projection stabilizes the integration and reduces numerical errors at large
time steps.

The paper is organized as follows. Section 2 reviews the chemical kinetic problem and its
mass-balanced and positivity properties; the preservation of these properties by numerical
schemes is discussed in Section 3. Section 4 develops the positivity-preserving projection
algorithm, while the optimization process is highlighted in Section 5. A simpler technique
for stabilizing the reaction simplex is discussed in Section 6. A test case from stratospheric
chemistry is considered in Section 7, where different numerical results are presented. Finally,
the findings and conclusions of the paper are summarized in Section 8.

2. MASS-ACTION KINETICS, LINEAR INVARIANTS, AND POSITIVITY

Consider a chemical kinetic system with s speciesy1, . . . , ys interacting inr chemical
reactions:

s∑
j=1

`i j yj
ki→

s∑
j=1

ri j yj , i = 1, . . . , r.

To describe the system one builds the matrices of stoichiometric coefficients

R= (ri j )i j , L = (`i j )i j , S= R− L ∈ <s×r , (2.1)

and the vector of reaction velocitiesω ∈ <r

ωi (y) = ki

s∏
j=1

(yj )
`i j , i = 1, . . . , r. (2.2)
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The time evolution of the chemical concentrations is governed by the “mass-action kinetics”
differential law1

y′ = S · ω(y), y(t0) = y0. (2.3)

Each vectore∈ ker (ST ) is a linear invariant of the system (2.3) since

eT S= 0⇒ eT y′(t) = 0⇒ eT y(t) = const.

If rank(S) = s−m the system admitsm linearly independent invariants; letA ∈ <s×m be a
matrix whose columns form a basis for the null space ofST . Any solution of (2.3) satisfies

AT y(t) = AT y0 = b = const. for all t ≥ t0, (2.4)

whereb ∈ <m is the vector of invariant values. Simply stated, the existence of linear invari-
ants ensures that mass is conserved during chemical reactions.

Let us now separate the production termsP(y) from the destruction termsD(y) in (2.3):

P(y) = Rω(y), D(y) = diag

(
[Lω(y)]1

y1
· · · [Lω(y)]s

ys

)
, y′ = P(y)− D(y)y.

The special form of the reaction velocities (2.2) ensures thatDii (y) are polynomials in
y. Recall thatR≥ 0, L ≥ 0, andk ≥ 0 (stoichiometric coefficients and reaction rates are
positive). If at time momentτ all concentrations are nonnegative,y(τ ) ≥ 0, and the con-
centration of speciesi is zero,yi (τ ) = 0, then the corresponding derivative is nonnegative,
y′i (τ ) = Pi (τ ) ≥ 0, which implies that

y(t0) ≥ 0⇒ y(t) ≥ 0 for all t ≥ t0. (2.5)

In short, the concentrations cannot become negative during chemical reactions.
Linear invariants (2.4) and positivity (2.5) imply that the solution of (2.3) remains within

the reaction simplex all the time,

y(t) ∈ S for all t ≥ t0, S = {y ∈ <s s.t. AT y = b andy ≥ 0}. (2.6)

3. NUMERICAL PRESERVATION OF THE LINEAR

INVARIANTS AND POSITIVITY

A general principle in scientific computing says that the numerical solution must capture
(as much as possible) the qualitative behavior of the true solution. Good numerical methods
for integrating chemical reaction models (2.3) should thereforebe unconditionally stable, as
the system is usually stiff (this requires implicit integration formulas); shouldpreserve the
linear invariants—otherwise artificial mass sources (or sinks) are introduced; and should
preserve solution positivity.

Negative concentrations are nonphysical. In addition, the kinetic system may become
unstable for negative concentrations. An operator-split solution of convection–diffusion

1 We denote byyi both the chemical speciesi and its mass concentration.
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reaction atmospheric equations alternates chemical integration steps with advection steps;
negative concentrations from chemical integration can hurt the positivity of the following
advection step, which will perturb the next chemical step, etc., leading to poor-quality
results.

A simple example of negative concentrations and instability is provided by Verweret al.

[14]. The chemical reaction(C + C
k→ · · ·) gives the following time evolution ofC:

C′ = −kC2, C(t0) = C0⇒ C(t) =
{

0 if C0 = 0,
(k(t − t0)+ 1/C0)

−1 if C0 6= 0.

Note that ifC0 > 0 the solution is bounded(0≤ C(t) ≤ C0) and decreases monotonically,
but if C0 < 0 the solution “explodes” in finite time,C(t)→−∞ ast → t0+ 1/(−C0k).

It is well known that the most popular integration methods (Runge–Kutta, Rosenbrock,
and linear multistep) preserve exactly2 all the linear invariants of the system [14]. Moreover,
the (modified) Newton iterations used to solve for implicit solutions also preserve the linear
invariants at each iteration. With linear-preserving integration methods the accuracy of the
individual components is given by the truncation errors (e.g., having a magnitude 10−4),
while the accuracy of the linear invariants is only affected by the roundoff errors (having a
much smaller magnitude, 10−14).

Positivity of the numerical solution is more difficult to achieve. Bolley and Crouzeix [2]
showed that (in the linear case) unconditional positivity limits the order of the numerical
method to one; conditional positivity imposes tight upper bounds on the step size (similar
to the bounds required for the stability of an explicit integration scheme). Hundsdorfer
[8] proved that the implicit Euler method is unconditionally positive. In practice, even the
implicit Euler method may produce negative values since the iterative solution process is
halted after a finite number of steps; while the exact solution is nonnegative, the successive
approximations computed by (modified) Newton method are not.

The most common method for avoiding negative concentrations (and possible unstable
behavior) isclipping. If the solution vector has negative components, they are simply set to
zero. Clipping destroys the preservation of linear invariants. Moreover, all clipping errors
act in the same direction, namely, increase mass (artificially); therefore they accumulate
over time and may lead to significant global errors over longer simulation intervals.

4. SOLUTION PROJECTION METHOD

Consider the numerical solution of the kinetic system (2.3) by a linear-preserving one-step
integration method8 (e.g., Runge–Kutta or Rosenbrock):

yn+1 = 8 f
h (y

n).

Heretn denotes the discrete time value atnth step,yn is the computed solution,h = tn+1− tn

is the step size, andf (t, y) = Sω(t, y). The method preserves the linear invariants,

ATyn+1 = ATyn = b,

2 If the computations are performed in infinite arithmetic precision.



POSITIVE NUMERICAL INTEGRATION METHODS 593

but not the positivity, and some of the computed concentrations may be negative:

yn+1
i 1 < 0 · · · yn+1

i p < 0.

We perform “clipping”while preserving the linear invariants; i.e.,we project the numerical
solutionyn+1 back onto the reaction simplexS = {AT z= b, z≥ 0}. The projected value
should approximate the true solutiony(tn+1); therefore it has to be chosen as close as
possible to the calculatedyn+1.

These considerations lead to a reformulation of the clipping problem as a linearly con-
strained, quadratic optimization problem. Given the “computed value”yn+1, we can find
the “projected value”zn+1 ∈ S which solves

min
1

2
‖zn+1− yn+1‖2G subject toAT zn+1 = b, zn+1 ≥ 0. (4.1)

The norm is‖y‖G =
√

yT Gy, whereG is a positive definite matrix specified below.
Adjustable step ODE solvers compute the solutionyn+1 together with an estimate of the

(component-wise) truncation erroren+1. The step-size control is based on user-prescribed
relative (rtol) and absolute (atol) error tolerances; the following scalar measure of the
truncation error is computed:

En+1 =
√√√√1

s

s∑
i=1

(
en+1

i

atol+ rtol
∣∣yn+1

i

∣∣
)2

.

The current valueyn+1 is accepted ifEn+1 < 1 and rejected otherwise. Clearly

En+1 = ‖en+1‖G(yn+1) with G(y) = diag
l≤i≤s

[
1

s(atol+ rtol|yi |)2
]
. (4.2)

Since a step-control mechanism tries to keep the truncation-error norm‖en+1‖G(yn+1)

small, it is natural to formulate the projection problem (4.1) in terms of the sameG-norm,
that is, to findz in the reaction simplex (2.6) which minimizes the projection-error norm
‖zn+1− yn+1‖G(yn+1).

Apparently, projection introduces an extra error such that‖zn+1− y(tn+1)‖G ≤ ‖yn+1−
y(tn+1)‖G + ‖zn+1− yn+1‖G. A closer look reveals the following.

LEMMA 4.1. The projected vector is a better(G-norm) approximation to the true solution
than is the computed vector,

‖zn+1− y(tn+1)‖G ≤ ‖yn+1− y(tn+1)‖G.

Proof. If yn+1 ≥ 0 thenzn+1 = yn+1 and we have norm equality. Ifyn+1
i < 0 for some

i , consider the vectorsY = G1/2yn+1, Z = G1/2zn+1, andW = G1/2y(tn+1). We have

AT G−1/2Y = b and W ∈ S̄, whereS̄ = {X : AT G−1/2X = b, X ≥ 0}.
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The problem (4.1) is equivalent to

min
1

2
‖Z − Y‖22 subject toZ ∈ S̄.

SinceS̄ is a convex set,Y /∈ S̄, andZ is the point inS̄ that is closest toY, the hyper-plane
perpendicular to the directionY Z and which passes throughZ separatesS̄ andY. For any
W ∈ S̄ the angle(Y ZW) is larger than 90◦; thereforeY W is the largest edge in the triangle
Y ZW. In particular,

‖Y −W‖2 ≥ ‖Z −W‖2⇒ ‖yn+1− y(tn+1)‖G ≥ ‖zn+1− y(tn+1)‖G.

Note that the above proof only uses the convexity of the reaction simplexS; consequently,
the results of this paper extend to any differential equation whose exact solution stays within
a convex set.

Schematically, one step of the method reads

ȳn+1 = 8 f
h (y

n); G = G(ȳn+1);
IF {ȳn+1

i < 0 for somei } THEN

min 1
2‖zn+1− ȳn+1‖2G s.t. ATzn+1 = b, zn+1 ≥ 0; (4.3)

yn+1 = zn+1;
ELSE

yn+1 = ȳn+1.

We will call this method thepositive-projection method, since at each step the numerical
solution is “projected” back onto the reaction simplex (2.6). A direct consequence of Lemma
4.1 is that the consistency order of the projection method (4.3) is the order of the underlying
time discretization8, since the projection step does not increase the truncation error. The
same convergence analysis applies. In this particular sense the positive-projection method
(4.3) overcomes the order one barrier of Bolley and Crouzeix [2].

The idea can be combined with a variable time-step strategy. Ifen+1 is the truncation error
estimate andEn+1 = ‖en+1‖G, the step is accepted forEn+1 < 1 and rejected otherwise.
We check positivity only for accepted solutions, and if negative we project them. Since
projection does not increase the error norm (Lemma 4.1) the optimal value can be accepted
as the new approximation. If we stop the optimization procedure before the solution is
attained, e.g., if at the current iterationzn+1 ∈ S is “reasonably close” tōyn+1 and we
accept it, then a conservative approach makes sense; estimateFn+1 = ‖zn+1− yn+1‖G
and check thatEn+1+ Fn+1 < 1; if not, reject the step and continue with a reduced step
size. This ensures that‖zn+1− y(tn+1)‖G < 1. Also, if the optimization algorithm does not
converge (which is possible only in the presence of large numerical errors), then reject the
step and continue with a reduced step size.

5. THE OPTIMIZATION ALGORITHM

It remains to find a suitable way of computingzn+1; i.e., a way to solve the quadratic
minimization problem (4.1). Note that the reaction simplex (2.6) is never empty—it contains
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at least the initial conditions. Therefore, the theoretical minimization problem (4.1) is always
feasible since we compute the minimal distance between a point and a nonempty convex set.

For the practical implementation we reformulate (4.1) as

min
1

2
(zn+1)T Gzn+1− (Gȳn+1)T zn+1 subject toAT zn+1 = b, zn+1 ≥ ε. (5.1)

The entriesεi > 0 are small positive numbers; their role is to keepzn+1
i ≥ 0 even when the

computation is corrupted by roundoff. We assume that the mass invariants are independent
(AT has full row rank) and that̄yn+1 satisfies the equality constraints (AT ȳn+1 = b).

Any algorithm for quadratic programming can be employed to solve (5.1). We found the
primal-dual algorithm of Goldfarb and Idnani [5] to be a suitable solution method. This
algorithm finds a solution or detects infeasibility in a finite number of steps. The linear
algebra involvesm-dimensional systems, as opposed to the integration step which solves
s-dimensional systems; since the number of invariantsm is much smaller than the number
of chemical speciess, the optimization process is relatively inexpensive. Last, but not least,
the Goldfarb and Idnani algorithm can be initialized with the infeasible vectorȳn+1; this is
a good starting point sinceAT ȳn+1 = b and the negative part(ȳn+1)− is small (of the order
of truncation error).

For a complete description of the algorithm, the reader is referred to the original paper
[5]. The algorithm has been adapted to our particular problem (5.1) to accommodate the
equality constraintsAT z= b at all iterations, to take advantage of the diagonal form ofG,
and to exploit the special form of the inequality constraintszi ≥ εi .

6. SOLUTION STABILIZATION METHOD

We now present a simpler alternative to the projection algorithm. Givenȳn+1 = 8 f
h (y

n)

with ȳn+1
i 1 , . . . , ȳn+1

i p < 0, we denoteB = [ A|ei 1| · · · |eip], whereej is the j th unit vector.
B is a collection of active constraint normals. We look forzn+1, “the nearest” point to
ȳn+1 which satisfiesAT zn+1 = b, zn+1

i 1 = 0, . . . , zn+1
i p = 0. The solutionzn+1 is given by

the orthogonal projection of̄yn+1 onto the manifold{z : BT z= [b, 0]T }.
Following the discussion in Section 5, it is advantageous to project onto the perturbed

manifold {z : BT z= [b, ε]T }, ε = [εi 1, . . . , εi p]T , positive and small, as a guard against
roundoff errors. Since for our application the “nearest distance” is measured in theG-norm
(4.2), the correspondingG-orthogonal projection onto the perturbed manifold is employed.
The proposed algorithm reads

ȳn+1 = 8 f
h (y

n) with ȳn+1
i 1 , . . . , ȳn+1

i p < 0, B = [ A|ei 1| · · · |eip],

yn+1 = ȳn+1− G−1B(BT G−1B)−1


AT ȳn+1− b

ȳn+1
i 1 − εi 1

...

ȳn+1
i p − εi p

 . (6.1)

It can be directly verified that the solution satisfiesATyn+1 = b, yn+1
i 1 = εi 1, . . . , yn+1

i p =
εi p. If 8 f

h preserves the linear invariants (as it should), we can replaceAT ȳn+1− b = 0
in (6.1). The implementation is done in a numerically stable fashion using a reduced QR
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decomposition:

G−1/2B = QR= Q1R1, (BT G−1B)−1 = R−1
1 R−T

1 .

The method does not guarantee positivity, since the projection step may render other
components negative (i.e.,yn+1

j < 0 for j 6= i 1 . . . i p). To guarantee positivity we can
extendB by appending the columnej , B← [B|ej ], and repeat the projection step, etc.
This is just the Goldfarb and Idnani algorithm with full steps at each iteration and without
the relaxation of unneeded active constraints. Several steps are also needed if the number
of negative componentsp is large,m+ p > s.

This noniterative version can have a beneficial effect on maintaining positivity. We justify
this informally by noting the relationship with the invariant stabilization method of Ascher
et al. [1]. The kinetic system together with the invariants in explicit form is

y′ = f (y), y(t0) = y0, h(y) =
[

AT y− b

y−

]
= 0.

BT is a reduced form of the Jacobian matrixH = ∂h/∂y, obtained by removing the rows
and columns which correspond to nonnegative componentsyi ≥ 0. In the spirit of [1] the
method (6.1) can be viewed as a discretization of the “stabilized” system

y′ = f (y)− H T (H H T )−1h(y)

(with reducedh, H ). The correction term is zero if the solution lies within the simplex; if
the solution is outside the reaction simplex, the correction term “pulls back” the trajectory
toward the simplex; for example, if some component becomes negative, the correction term
will increase its concentration. Therefore, the simplex becomes “attractive”; the solution
cannot drift away so occasional negative concentrations do not lead to instability. For these
reasons, we will refer to (6.1) as thestabilizationmethod.

7. NUMERICAL RESULTS

Consider the basic stratospheric reaction mechanism (adapted from NASA HSRP/AESA
[9])

(r 1) O2+ hν
k1→ 2O (k1 = 2.643× 10−10 · σ 3)

(r 2) O+O2
k2→ O3 (k2 = 8.018× 10−17)

(r 3) O3+ hν
k3→ O+O2 (k3 = 6.120× 10−04 · σ)

(r 4) O+O3
k4→ 2O2 (k4 = 1.576× 10−15)

(r 5) O3+ hν
k5→ O1D +O2 (k5 = 1.070× 10−03 · σ 2)

(r 6) O1D + M
k6→ O+ M (k6 = 7.110× 10−11)

(r 7) O1D +O3
k7→ 2O2 (k7 = 1.200× 10−10)

(r 8) NO+O3
k8→ NO2+O2 (k8 = 6.062× 10−15)

(r 9) NO2+O
k9→ NO+O2 (k9 = 1.069× 10−11)

(r 10) NO2+ hν
k10→ NO+O (k10 = 1.289× 10−02 · σ).

(7.1)
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HereM= 8.120E+ 16 molec/cm3 is the atmospheric number density, the rate coefficients
are scaled for timet in seconds, andσ(t) represents the normalized sunlight intensity,

TL =
(

t

3600

)
mod 24; TR = 4.5(sunrise); TS = 19.5(sunset);

σ(t) =


1
2 + 1

2cos
(
π

∣∣∣ 2TL − TR− TS
TS− TR

∣∣∣[ 2TL − TR− TS
TS− TR

])
if TR ≤ TL ≤ TS.

0 otherwise

It is easy to see that along any trajectory of the system (7.1) the number of oxygen atoms
and the number of nitrogen atoms are constant,

[O1D] + [O] + 3[O3] + 2[O2] + [NO] + 2[NO2] = const., [NO] + [NO2] = const.;

therefore if we denote the concentration vector

y = [[O1D], [O], [O3], [O2], [NO], [NO2]] T ,

the linear equality constraints have the form

AT =
[

1 1 3 2 1 2
0 0 0 0 1 1

]
, ATy(t) = ATy(t0) = b.

We implemented the numerical examples in MATLAB. The simulation starts at noon with
the initial concentrations shown in Table I and continues for 72 h. The computation of
G-norms was done withrtol = 10−5 andatol= 10−3. Throughout the tests the minimal
values were set toεi = 1 molec/cm3 . Reference solutions were obtained with the MATLAB
integration routineODE15S (variable order numerical differentiation formula); the control
parameters wereRelTol= 10−8, AbsTol= 10−8 , with analytic Jacobian.

The integration algorithms used are BDF2 (8.1), Ros2 (8.4), Rodas3 (8.3), and RK2 (8.2).
Verweret al. [15, 16] advocated the favorable positivity properties of Ros2.

For the BDF2 and Rodas3 standard solutions [O1D], [NO], and [NO2] concentrations
fall frequently below zero, while Ros2 only seldom gives negative concentrations; this
observation is in agreement with [15, 16]. Clipped, projected, and stabilized versions of all
methods produce nonnegative concentrations. Table II shows the computational work of
each algorithm (in Kflops—thousands of floating point operations) for a step sizeh =
24 min. Projected Rodas3 is almost 50% more costly than standard Rodas3 since the
optimization routine is called many times. The overheads for BDF2 and RK2 are about
28%. With Ros2 the optimization routine is called only a few times and the overhead is
small (8%). For all methods stabilization produces similar results at half the overhead. We

TABLE I

Initial Concentrations for the Simulation (molec/cm3)

System O1D O O3 O2 NO NO2

(7.1) 9.906E+01 6.624E+08 5.326E+11 1.697E+16 8.725E+08 2.240E+08
(7.1)–(7.3) 9.906E+01 6.624E+08 5.326E+11 1.697E+16 4.000E+06 1.093E+09
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TABLE II

Computational Work (in Kflops) for Integrating the Stratospheric Problem (7.1)

with Various Algorithms Using a Step Sizeh = 24 min

Integrator Standard w/Projection Overhead w/Stabilization Overhead

Ros2 335 Kflops 362 Kflops 8% 348 Kflops 4%
Rodas3 441 Kflops 655 Kflops 49% 561 Kflops 27%
BDF2 482 Kflops 622 Kflops 29% 557 Kflops 16%
RK2 971 Kflops 1240 Kflops 28% 1126 Kflops 16%.

conclude that projection and stabilization work best when paired with an integration formula
that favors positivity (e.g., Ros2) and that stabilization is the more erective technique.

To compare the performance of different methods we measured the solution accuracy
at the end of the integration interval (t = TF ). With yR the reference solution andy the
computed solution, the error measure reads

E =
√√√√1

s

s∑
i=1

(
yi (TF )− yR

i (TF )

yR
i (TF )

)2

. (7.2)

Figure 1 shows the solution accuracies (7.2) versus computational work (Kflops) for dif-
ferent methods. At large step sizes clipping introduces significant component errors, while
projection and stabilization show good accuracies. Recall that errors in the linear invariants

FIG. 1. Work-precision diagrams for the system (7.1). Integration with Ros2, Rodas3, BDF2, and RK2
(standard, clipped, optimal projection, and stabilization methods).
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are also very large with clipping and very small with projection and stabilization. For very
small step sizes all versions perform similarly. The slopes suggest that for all methods the
standard, projected, and stabilized versions have the same orders of accuracy.

The reduced stratospheric system (7.1) autocorrects the negative values of O, O1D, and
NO, which explains the good accuracy of the standard methods. For example, the atomic
oxygen destruction term is−[O](k2[O2] + k4[O3] + k9[NO2]); since the parentheses do not
depend on any “possibly negative” concentration, whenever [O]< 0 this destruction term
is positive (produces O!) and the oxygen concentration increases toward positive values.
Not all chemical systems have the autocorrection property. Appending the extra reaction

(r 11)NO+O
k11→ NO2 (k11 = 1.0E − 8) (7.3)

leads to a noncorrecting kinetic scheme, as (7.3) will continue to destroy NO and O even
when their concentrations become negative.

The extended system (7.1)–(7.3) with initial values of Table I was integrated with the
positivity-favoring method Ros2. Table III shows the solution errors (7.2) versus the step
size, the computational work (in Kflops), and overheads. Clearly, this noncorrecting sys-
tem is a more challenging computational problem: for fixed step sizes larger than 15 min
standard Ros2 is unstable, while clipping introduces significant errors. The projected and
the stabilized solutions show good accuracies even at very large time steps. Errors in NO
and NO2 are present at the night-to-day transitions, but they do not accumulate in time. The
invariant errors are also very small. For step sizes of 6 min or less the methods give similar
results. As expected, the overheads are larger in the large-step regime.

Additional experiments (not shown here) were performed with a variable-step version of
Ros2. It produced accurate solutions but the computational costs were much higher than the
fixed-step costs for medium-to-modest accuracy. Projection and stabilization did not seem
to improve significantly the performance of the standard variable-step algorithm; however,
some improvements were noticed when a minimal steph = 1 min was imposed.

Lumping does not affect positivity or stability. We integrated the lower dimensional
equivalent system obtained by substituting [O1D] = b1− [O] − 3[O3] − 2[O2] − [NO] −
2[NO2] and [NO]= b2− [NO2]. There still are negative concentrations produced, and the
behavior is similar to that of the nonlumped system.

TABLE III

The Work (Kflops) and Overhead versus Solution Accuracy for Integrating the Extended

Stratospheric Problem (7.1)–(7.3) with Ros2 for Standard, Clipped, Projected, and Stabi-

lized Versions

Standard w/Clipping w/Projection w/Stabilization
Ros2

h (min) Work Error Work Error Work Error Work Error

48 — — 189 5.22E+0 222 (17%) 1.48E−3 204 (8%) 1.48E−3
24 — — 378 5.27E−1 412 (9%) 2.14E−4 393 (4%) 2.14E−4
12 756 1.62E−4 756 4.03E−2 791 (5%) 1.57E−4 773 (2%) 1.57E−4
6 1513 4.43E−5 1513 4.52E−5 1553 (3%) 4.50E−5 1525 (1%) 4.50E−5
3 3027 1.10E−5 3027 1.13E−5 3067 (1%) 1.12E−5 3043 (0.5%) 1.12E−5
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8. CONCLUSIONS

We presented two techniques that ensure mass conservation and positivity for the numer-
ical solutions of chemical kinetic problems. The techniques are based on postprocessing
the next-step approximations given by linear-preserving methods, should negative concen-
trations develop.

Projection finds the nearest vector in the reaction simplex (2.6) by solving a quad-
ratic optimization problem. This optimal vector better approximates the true solution
(Lemma 4.1). Consequently, projection is an unconditionally positive integration method
with the same order of consistency as the underlying time-stepping scheme; in this sense it
overcomes the barriers of [2]. In practice, the technique alleviates the step-size restrictions
when higher order integration methods are used.

A less expensive alternative is the stabilization method. Although positivity is not guar-
anteed, the overall behavior is very good and the solutions are similar to the ones obtained
by optimal projection.

Both techniques have to be paired with a positivity-favorable numerical integration
method, for example, Ros2 [15, 16]. Although such methods do not guarantee positiv-
ity, they seldom produce nonpositive results, which minimizes the overheads incurred by
projection or stabilization.

Projection and stabilization yield better accuracies than clipping for large time steps. If the
kinetic system self-corrects the negative concentrations, neither technique seems necessary.
For systems that are unstable at negative concentrations, projection and stabilization allow
larger time steps than the standard integration.

In air-quality modeling, fixed-step integration plus clipping is a popular approach; how-
ever, clipping adds nonphysical mass. Fixed-step plus simplex projection ensures positivity
and mass balance; for medium-to-modest accuracy requirements this is more effective than
variable step sizes. In addition, in a parallel implementation of an air-quality model fixed
step sizes lead to a better load balance and increased overall efficiency.

An apparent disadvantage of the methods is that one has to compute the linear invariants
explicitly. The linear invariants, however, can be automatically generated by specialized
software that translates kinetic reactions into differential equations (e.g., KPP [4]).

APPENDIX: NUMERICAL INTEGRATION METHODS

The second-order backward differentiation formula BDF2 [6, Section III.1] is

yn+1 = Yn + 2

3
h f (tn+1, yn+1), Yn = 4

3
yn − 1

3
yn−1. (8.1)

Heretn+1 = tn + h = tn−1+ 2h; for variable time steps the coefficients change. The very
first step requires bothy1 andy0; the former is given, while the latter is obtained with one
backward Euler step.

The second-order Runge–Kutta method RK2 [10] is

yn+1 = yn + (1− γ )k1+ γ k2

k1 = h f (tn + γh, yn + γ k1), (8.2)

k2 = h f (tn + h, yn + (1− γ )k1+ γ k2),

with γ = 1−√2/2.
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For the following Rosenbrock methods the Jacobian matrixJ = ∂ f (t, y)/∂y and the
time partial derivativeft = ∂ f (t, y)/∂t are evaluated att = tn. The Rodas3 method [12]
is third-order accurate and reads

yn+1 = yn + 2k1+ k3+ k4,(
2

h
I − J

)
k1 = f (tn, yn)+ h

2
ft ,(

2

h
I − J

)
k2 = f (tn, yn)+ 4

h
k1+ 3h

2
ft , (8.3)(

2

h
I − J

)
k3 = f (tn + h, yn + 2k1)+ 1

h
k1− 1

h
k2,(

2

h
I − J

)
k4 = f (tn + h, yn + 2k1− k3)+ 1

h
k1− 1

h
k2− 8

h
k3.

The second-order Rosenbrock scheme Ros2 [15, 16] is defined as

yn+1 = yn + 3

2γ
k1+ 1

2γ
k2,(

1

γh
I − J

)
k1 = f (tn, yn)+ γh ft , (8.4)(

1

γh
I − J

)
k2 = f

(
tn + h, yn + 1

γ
k1

)
− 2

γh
k1− γh ft ,

with γ = 1+ 1/
√

2. The vectoryn + (1/γ )k1 is a consistent approximation attn+1 and
was used to implement the error estimator in the variable step formulation. In [15, 16] it was
noted that Ros2 have favorable positivity properties, and the method is stable for nonlinear
problems even with large fixed step sizes. It was also noted that Ros2 provides positive solu-
tions for the scalar problemsC′ = −kCandC′ = −kC2 ,C(t0) ≥ 0. A possible explanation
for the good observed behavior is that the transfer function of this method and its first two
derivatives are all nonnegative for any real, negative argument (i.e.,R(z), R′(z), R′′(z) ≥ 0
for anyz≤ 0). In view of the theory developed in [2] this might reduce the negative values
and have a good influence on the positivity of solutions.
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