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Chemical kinetics conserves mass and renders nonnegative solutions; a good nu-
merical simulation would ideally produce mass-balanced, positive concentration vec-
tors. Many time-stepping methods are mass conservative; however, unconditional
positivity restricts the order of a traditional method to one. The projection method
presented in this paper ensures mass conservation and positivity. First, a numerical
approximation is computed with one step of a mass-preserving traditional scheme. If
there are negative components, the nearest vector in the reaction simplex is found by
solving a quadratic optimization problem; this vector is shown to better approximate
the true solution. A simpler version involves just one projection step and stabilizes
the reaction simplex. This technique works best when the underlying time-stepping
scheme favors positivity. Projected methods are more accurate than clipping and
allow larger time steps for kinetic systems which are unstable outside the positive
quadrant. © 2001 Academic Press

Key Words:chemical kinetics; linear invariants; positivity; numerical time inte-
gration; quadratic optimization.

1. INTRODUCTION

Air-quality models [3, 11] solve the convection—diffusion reaction set of partial differ
ential equations which describe the atmospheric physical and chemical processes. Us
an operator-split approach is taken: chemical equations and convection—diffusion equat
are solved in alternative steps. In this setting the integration of chemical kinetic equati
is a demanding computational task. The chemical integration algorithm should be stabl
the presence of stiffness; ensure a modest level of accuracy, typically 1%; preserve
and keep the concentrations positive.

Most popular ODE integrators (multistep, Runge—Kutta, Rosenbrock) preserve mass
positivity is more difficult to achieve. Clipping (setting the negative concentrations to zel
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enhances stability but artificially adds mass to the system. There are numerical integra
methods that automatically preserve both mass and positivity, e.g., backward Euler
However, as shown by Bolley and Crouzeix [2], positivity either restricts the order of tt
method to one or restricts the step size to impractically small values.

A general analysis of conservation laws and the numerical solutions of ordinary diff
ential equations are given by Shampine [13]. The author considers “perturbation methc
where the computed solution is modified to satisfy exactly the desired invariants. The m
ods presented here belong to this “perturbation” category, but they are specific to syst
with linear equality and inequality invariants, e.g., chemical kinetic models. The main id
can be directly extended to systems whose solutions remain within a convex set.

In this paper we try to alleviate the order and step-size restrictions that come with posi
ity. The solutions computed at each step by a standard integration method are “projec
back onto the reaction simplex. The resulting vectors better approximate the true solu
itself (Lemma 4.1). The paper also presents a simpler, noniterative stabilization method.
techniques developed are of theoretical interest as they produce mass-balanced and pc
solutions with high-order schemes and large step sizes. These techniques are of pra
interest for general chemical kinetic mechanisms, whenever nonlinearity makes nege
solutions unstable: projection stabilizes the integration and reduces numerical errors at |
time steps.

The paper is organized as follows. Section 2 reviews the chemical kinetic problem anc
mass-balanced and positivity properties; the preservation of these properties by nume
schemes is discussed in Section 3. Section 4 develops the positivity-preserving projec
algorithm, while the optimization process is highlighted in Section 5. A simpler techniqt
for stabilizing the reaction simplex is discussed in Section 6. A test case from stratosph
chemistry is considered in Section 7, where different numerical results are presented. Fin
the findings and conclusions of the paper are summarized in Section 8.

2. MASS-ACTION KINETICS, LINEAR INVARIANTS, AND POSITIVITY

Consider a chemical kinetic system with s spegigs . ., ys interacting inr chemical
reactions:

S S
ki .
Sty = > oy, =11
j=1 j=1
To describe the system one builds the matrices of stoichiometric coefficients

R = (rij)ij., L = (4j)ij, S=R—L e R, (2.1)

and the vector of reaction velocitiease R’

oy =k [Jop®.,  i=1....r (2.2)
j=1
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The time evolution of the chemical concentrations is governed by the “mass-action kineti
differential lawt

y =Sy, Yyt)=y" (2.3)
Each vectoe € ker (S") is a linear invariant of the system (2.3) since
e'S=0=e'y(t) =0= e'y(t) = const

If rank(S) = s — mthe system admits linearly independent invariants; 18t € )%™ be a
matrix whose columns form a basis for the null spac&afAny solution of (2.3) satisfies

ATyt) = ATy’ =b=const  forallt > to, (2.4)

whereb € )™ is the vector of invariant values. Simply stated, the existence of linear inva
ants ensures that mass is conserved during chemical reactions.
Let us now separate the production terR(y) from the destruction termB (y) in (2.3):

[LoW]  [LoW]s
Y1 Ys

P(y)=Ra(y), D(y)= diag( ) . Y =P -Dyy.
The special form of the reaction velocities (2.2) ensures ihaty) are polynomials in

y. Recall thatR > 0, L > 0, andk > O (stoichiometric coefficients and reaction rates are
positive). If at time moment all concentrations are honnegatiwgz) > 0, and the con-
centration of specidss zero,y; (r) = 0, then the corresponding derivative is nonnegative
Y/ () = B (r) = 0, which implies that

Y(g) > 0= y({) >0 forallt > to. (2.5)

In short, the concentrations cannot become negative during chemical reactions.
Linear invariants (2.4) and positivity (2.5) imply that the solution of (2.3) remains withi
the reaction simplex all the time,

yt)eS forallt>ty, S={yenRst. Aly=bandy>0}. (2.6)

3. NUMERICAL PRESERVATION OF THE LINEAR
INVARIANTS AND POSITIVITY

A general principle in scientific computing says that the numerical solution must captt
(as much as possible) the qualitative behavior of the true solution. Good numerical mett
for integrating chemical reaction models (2.3) should therdfenenconditionally stables
the system is usually stiff (this requires implicit integration formulas); shptaderve the
linear invariants—otherwise artificial mass sources (or sinks) are introduced; and shol
preserve solution positivity

Negative concentrations are nonphysical. In addition, the kinetic system may becc
unstable for negative concentrations. An operator-split solution of convection—diffusi

1We denote by both the chemical speciésind its mass concentration.
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reaction atmospheric equations alternates chemical integration steps with advection s
negative concentrations from chemical integration can hurt the positivity of the followir
advection step, which will perturb the next chemical step, etc., leading to poor-qual
results.

A simple example of negative concentrations and instability is provided by Vexrtvedr

[14]. The chemical reactio(C + C LG -) gives the following time evolution dt:

/ 2 0 if Co =0,
C=-k& Clo=Co=Clh= {(k(t —t)+1/Cot  ifCo£0,
Note that ifCy > 0 the solution is bounde@ < C(t) < Cp) and decreases monotonically,
but if Cy < 0 the solution “explodes” in finite time (t) — —oo ast — tg + 1/(—Cgk).

It is well known that the most popular integration methods (Runge—Kutta, Rosenbro
and linear multistep) preserve exaétifl the linear invariants of the system [14]. Moreover,
the (modified) Newton iterations used to solve for implicit solutions also preserve the line
invariants at each iteration. With linear-preserving integration methods the accuracy of
individual components is given by the truncation errors (e.g., having a magnitudg 10
while the accuracy of the linear invariants is only affected by the roundoff errors (having
much smaller magnitude, 1&).

Positivity of the numerical solution is more difficult to achieve. Bolley and Crouzeix [2
showed that (in the linear case) unconditional positivity limits the order of the numeric
method to one; conditional positivity imposes tight upper bounds on the step size (sim
to the bounds required for the stability of an explicit integration scheme). Hundsdor
[8] proved that the implicit Euler method is unconditionally positive. In practice, even tt
implicit Euler method may produce negative values since the iterative solution proces
halted after a finite number of steps; while the exact solution is nonnegative, the succes
approximations computed by (modified) Newton method are not.

The most common method for avoiding negative concentrations (and possible unst:
behavior) isclipping. If the solution vector has negative components, they are simply set
zero. Clipping destroys the preservation of linear invariants. Moreover, all clipping errc
act in the same direction, namely, increase mass (artificially); therefore they accumu
over time and may lead to significant global errors over longer simulation intervals.

4. SOLUTION PROJECTION METHOD

Consider the numerical solution of the kinetic system (2.3) by alinear-preserving one-<
integration method (e.g., Runge—Kutta or Rosenbrock):

Y = @y (v

Heret" denotes the discrete time valuatt stepy" is the computed solutioh, = t"+1 — t"
is the step size, anfi(t, y) = Sw(t, y). The method preserves the linear invariants,

ATyn+l — ATyn — b,

21f the computations are performed in infinite arithmetic precision.
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but not the positivity, and some of the computed concentrations may be negative:

yt <0---yi”p+1 < 0.

We perform “clipping”while preserving the linear invariants; i.e.,we project the numeric
solutiony™*? back onto the reaction simpleék= {ATz = b, z > 0}. The projected value
should approximate the true solutigiit"*!); therefore it has to be chosen as close a:
possible to the calculated+?.

These considerations lead to a reformulation of the clipping problem as a linearly ¢
strained, quadratic optimization problem. Given the “computed vaytl&t, we can find
the “projected valuez™! € S which solves

1
min > |z" — y™12 subject toATZ"t = Db, 2" > 0. 4.1)

The normis|yllc = v/Y' Gy, whereG is a positive definite matrix specified below.
Adjustable step ODE solvers compute the solugBht together with an estimate of the
(component-wise) truncation errettl. The step-size control is based on user-prescribe
relative (tol) and absolutedtol) error tolerances; the following scalar measure of the

truncation error is computed:

1 S Qn-ﬁ-l 2
En+1 — - I B .
s Z (atoIJr rtol |yi“+1\>

i=1

The current valug"+! is accepted iE"*! < 1 and rejected otherwise. Clearly

ML — || e"tt nil ith G(y) = di _ |
1€ oy with G(y) |5|ia§% s(atol + rtol|y; )2

(4.2)
Since a step-control mechanism tries to keep the truncation-error W&’ﬁne(ym)
small, it is natural to formulate the projection problem (4.1) in terms of the s&merm,
that is, to findz in the reaction simplex (2.6) which minimizes the projection-error norn
||Zn+1 _ yn+1||G(y”+1)-
Apparently, projection introduces an extra error suchfa@t! — yt" g < [[y™! —
y(t" Y |lg + 12"t — y"1||s. A closer look reveals the following.

LEMMA 4.1. The projected vector is a bett@B-norm) approximation to the true solution
than is the computed vector

124 — yt™Y e < Iy™ — yt™Ye.

Proof. If y™! > 0thenz™! = y™! and we have norm equality. yf'"** < 0 for some
i, consider the vector¢ = GY/2y"1 7 = GY2z2'*1 andW = GY2y(t"+1). We have

ATG Y2y =b and WeS, whereS={X:ATG ¥2X =D, X > 0}.
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The problem (4.1) is equivalent to
1 2 . -
min §”Z -YI5 subject toZ € S.

Sinces is a convex sety ¢ S, andZ is the point inS that is closest t, the hyper-plane
perpendicular to the directioriZ and which passes throughseparatesS andY. For any
W e S the anglglY ZW) is larger than 99 thereforeY Wis the largest edge in the triangle
Y ZW. In particular,

IY =Wl > |Z = W2 = Iy — yt"™ g > 12" — yt"™)|l6. =

Note that the above proof only uses the convexity of the reaction sinsplsonsequently,
the results of this paper extend to any differential equation whose exact solution stays wi
a convex set.

Schematically, one step of the method reads

Y=oy G =GEMY:
IF {y"** < 0 for somei} THEN

min 312" — Y™ st AT = b, 2" > 0; (4.3)
yn-&-l — Zn+1;
ELSE

n+1 _ gn+l
y "=y -

We will call this method thepositive-projection methgaince at each step the numerical
solution is “projected” back onto the reaction simplex (2.6). A direct consequence of Lem
4.1 is that the consistency order of the projection method (4.3) is the order of the underly
time discretizationb, since the projection step does not increase the truncation error. T
same convergence analysis applies. In this particular sense the positive-projection me
(4.3) overcomes the order one barrier of Bolley and Crouzeix [2].

The idea can be combined with a variable time-step strateg: fis the truncation error
estimate andE"*! = ||e"!||¢, the step is accepted f&"+! < 1 and rejected otherwise.
We check positivity only for accepted solutions, and if negative we project them. Sin
projection does not increase the error norm (Lemma 4.1) the optimal value can be acce
as the new approximation. If we stop the optimization procedure before the solutior
attained, e.g., if at the current iteratiah*! € S is “reasonably close” tg"** and we
accept it, then a conservative approach makes sense; esfifiate= |z2"! — y"1| g
and check thaE"™! + F™1 < 1; if not, reject the step and continue with a reduced ste|
size. This ensures thpz" — y(t"™)||c < 1. Also, if the optimization algorithm does not
converge (which is possible only in the presence of large numerical errors), then reject
step and continue with a reduced step size.

5. THE OPTIMIZATION ALGORITHM

It remains to find a suitable way of computiafy*; i.e., a way to solve the quadratic
minimization problem (4.1). Note that the reaction simplex (2.6) is never empty—it contai
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atleasttheinitial conditions. Therefore, the theoretical minimization problem (4.1) is alwe
feasible since we compute the minimal distance between a point and a nonempty conve:
For the practical implementation we reformulate (4.1) as

1
min é(z”“)TGz‘“rl —(GY"HT*1  subject toATZ*t =b, 21>, (5.1)

The entries; > 0 are small positive numbers; their role is to keBp* > 0 even when the
computation is corrupted by roundoff. We assume that the mass invariants are indeper
(AT has full row rank) and thag"** satisfies the equality constrainta'(y"** = b).

Any algorithm for quadratic programming can be employed to solve (5.1). We found t
primal-dual algorithm of Goldfarb and Idnani [5] to be a suitable solution method. Th
algorithm finds a solution or detects infeasibility in a finite number of steps. The line
algebra involvesn-dimensional systems, as opposed to the integration step which sol
s-dimensional systems; since the number of invariamits much smaller than the number
of chemical species the optimization process is relatively inexpensive. Last, but not lea:
the Goldfarb and Idnani algorithm can be initialized with the infeasible vegtor; this is
a good starting point sinc&” y"+! = b and the negative pagy"+*)~ is small (of the order
of truncation error).

For a complete description of the algorithm, the reader is referred to the original pa
[5]- The algorithm has been adapted to our particular problem (5.1) to accommodate
equality constraint&\" z = b at all iterations, to take advantage of the diagonal forr& of
and to exploit the special form of the inequality constramts ;.

6. SOLUTION STABILIZATION METHOD

We now present a simpler alternative to the projection algorithm. Giteh= CDP': y"m

with ¥T, ..., Y™ < 0, we denoteB = [Ale| - - - |&p], whereg; is the jth unit vector.
Bis a coIIecuon of active constraint normals. We look #r!, “the nearest” point to
y"+! which satisfiesATz™* = b, 7} = 0, ..., z;* = 0. The solutionz"** is given by

the orthogonal projection gf"+! onto the manifoldz: BTz = [b, 0]"}.

Following the discussion in Section 5, it is advantageous to project onto the perturl
manifold {z: BTz=[b, €]"}, € = [€i1, ..., €ip]", positive and small, as a guard against
roundoff errors. Since for our application the “nearest distance” is measured@irioem
(4.2), the correspondin@-orthogonal projection onto the perturbed manifold is employec
The proposed algorithm reads

Y=ol withyTh . Y <0, B=[Aleil - lepl,
AT yn+1 _ b
ML _ ol alppTa-lgyot | N1 6t
y™t =y _ G 1B(BTG!B) , : (6.1)
Wpﬂ —ép
It can be directly verified that the solution satisfiesy"*! = b, y™* = €y, .. y.':;”l =

€ip. If cI>h preserves the linear invariants (as it should), we can rep@d@é‘*l b=0
in (6.1). The implementation is done in a numerically stable fashion using a reduced
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decomposition:
G Y2B=QR=Q;R;, (B'G'By'=R'R;".

The method does not guarantee positivity, since the projection step may render o
components negative (i.ey,Jn+1 <0 for j #il...ip). To guarantee positivity we can
extendB by appending the colume;, B < [Ble;], and repeat the projection step, etc.
This is just the Goldfarb and Idnani algorithm with full steps at each iteration and witho
the relaxation of unneeded active constraints. Several steps are also needed if the nu
of negative componentsis largem+ p > s.

This noniterative version can have a beneficial effect on maintaining positivity. We justi
this informally by noting the relationship with the invariant stabilization method of Asche
et al. [1]. The kinetic system together with the invariants in explicit form is

T
y=tw. yt)=y. hy= [A a b} =0,

BT is a reduced form of the Jacobian matkx= dh/dy, obtained by removing the rows
and columns which correspond to nonnegative compongnts0. In the spirit of [1] the
method (6.1) can be viewed as a discretization of the “stabilized” system

y = f(y)—HT(HH)th(y)

(with reducech, H). The correction term is zero if the solution lies within the simplex; if
the solution is outside the reaction simplex, the correction term “pulls back” the trajectc
toward the simplex; for example, if some component becomes negative, the correction t
will increase its concentration. Therefore, the simplex becomes “attractive”; the soluti
cannot drift away so occasional negative concentrations do not lead to instability. For th
reasons, we will refer to (6.1) as tk&abilizationmethod.

7. NUMERICAL RESULTS

Consider the basic stratospheric reaction mechanism (adapted from NASA HSRP/AE

[0

(r1) O, +hv &4 20 (ki = 2.643x 10°10. 43
(r2) 0+ 0, % 0; (k, = 8.018 x 1017
3) O3+ 8 040,  (ks=6.120x 10%. )
rd) 0+0; X4 20, (ks = 1.576 % 10719

(r5) O3+ hv 8 O + 0, (ks = 1.070x 10°%. ¢?)

r6) O + M8 04 M  (ks=7.110x 1071}

(r7) O + 0; X 20, (k; = 1.200x 10°19)

(r8) NO+ O3 *¢ NO, + 0, (kg = 6.062x 10°15)

(r9 NO, + 08 NO+0, (ko= 1.069x 10-1%)
(r10) NO, + hv ¢ NO+ 0O (ko = 1.289x 10°%2. o).

(7.1)
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HereM = 8.12(E + 16 molec/cm is the atmospheric number density, the rate coefficient
are scaled for timéin seconds, ane (t) represents the normalized sunlight intensity,

t .
T = (ﬁ)) mod 24 Tgr = 4.5(sunrisg; Ts = 19.5(sunsey;

1,1 2T —Tr—Ts
2+2COS(JT‘ T Ta

0 otherwise

o(t) = EE]) i TesTsTs

Itis easy to see that along any trajectory of the system (7.1) the number of oxygen at
and the number of nitrogen atoms are constant,

[OP] + [O] + 3[O3] + 2[02] + [NO] 4 2[NO;] = const, [NO] + [NO;] = const;
therefore if we denote the concentration vector
y = [[0*P],[O], [O3]. [O2]. [NOJ, [NO]] T,

the linear equality constraints have the form

AT = é é 3 g i |- AV =ATyto) =b.
We implemented the numerical examples in MATLAB. The simulation starts at noon wi
the initial concentrations shown in Table | and continues for 72 h. The computation
G-norms was done withtol = 10~° andatol = 10~3. Throughout the tests the minimal
values were settg = 1 molec/cni. Reference solutions were obtained with the MATLAB
integration routinedDEL5S (variable order numerical differentiation formula); the contro
parameters werBelTol= 108, AbsTol= 10-8 , with analytic Jacobian.

The integration algorithms used are BDF2 (8.1), Ros2 (8.4), Rodas3 (8.3), and RK2 (8
Verweret al.[15, 16] advocated the favorable positivity properties of Ros2.

For the BDF2 and Rodas3 standard solution$”[JO[NO], and [NQ,] concentrations
fall frequently below zero, while Ros2 only seldom gives negative concentrations; tl
observation is in agreement with [15, 16]. Clipped, projected, and stabilized versions of
methods produce nonnegative concentrations. Table Il shows the computational wor
each algorithm (in Kflops—thousands of floating point operations) for a stephsize
24 min. Projected Rodas3 is almost 50% more costly than standard Rodas3 since
optimization routine is called many times. The overheads for BDF2 and RK2 are ab
28%. With Ros2 the optimization routine is called only a few times and the overheac
small (8%). For all methods stabilization produces similar results at half the overhead.

TABLE |
Initial Concentrations for the Simulation (molec/cm?)

System oP (o] O 0, NO NGO,

(7.2) 9.90€+01  6.62£+08  532&+11  169E+16  8.72E+08  2.24E+08
(7.1)~(7.3)  9.906+01  6.62£+08  5.32€+11  1.69F+16  4.00E+06  1.09F+09
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TABLE Il
Computational Work (in Kflops) for Integrating the Stratospheric Problem (7.1)
with Various Algorithms Using a Step Sizeh = 24 min

Integrator Standard w/Projection Overhead w/Stabilization Overhead
Ros2 335 Kflops 362 Kflops 8% 348 Kflops 4%
Rodas3 441 Kflops 655 Kflops 49% 561 Kflops 27%
BDF2 482 Kflops 622 Kflops 29% 557 Kflops 16%
RK2 971 Kflops 1240 Kflops 28% 1126 Kflops 16%.

conclude that projection and stabilization work best when paired with an integration form
that favors positivity (e.g., Ros2) and that stabilization is the more erective technique.

To compare the performance of different methods we measured the solution accu!
at the end of the integration interval£ Tg). With yR the reference solution andthe
computed solution, the error measure reads

1 yi<TF>—yiR(TF))2
E=,|- = . 7.2
IS Z( y|R(TF) ( )

i=1

Figure 1 shows the solution accuracies (7.2) versus computational work (Kflops) for ¢
ferent methods. At large step sizes clipping introduces significant component errors, w
projection and stabilization show good accuracies. Recall that errors in the linear invarie

Ros2 Rodas3
let0Bogy 1.e+0
)
°°°.Q -x- Standard
_le2 + |/@ Clipped 1e-2
] Y Projected
w . |-A- Stabilized
§1e-4 ' Le-4
3
]
1.6-6 1e-6
1.e-8 1.e-8
100 1,000 10,000 100 1,000 10,000

1.e+0 1.e+0
L le-2 t.e-2
2
w
§ 1.e-4 1e-4
3
[
7]

1.e-6 1.e-6

1.e-8 1.e-8

100 1,000 10,000 100 1,000 10,000
Work [Kflops] Work (Kflops)

FIG. 1. Work-precision diagrams for the system (7.1). Integration with Ros2, Rodas3, BDF2, and R}
(standard, clipped, optimal projection, and stabilization methods).
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are also very large with clipping and very small with projection and stabilization. For ve
small step sizes all versions perform similarly. The slopes suggest that for all methods
standard, projected, and stabilized versions have the same orders of accuracy.

The reduced stratospheric system (7.1) autocorrects the negative values '8, @n@®
NO, which explains the good accuracy of the standard methods. For example, the atc
oxygen destruction term is[O] (k2[O2] + k4[O3] + Kg[NO>]); since the parentheses do not
depend on any “possibly negative” concentration, whenever[Q]this destruction term
is positive (produces O!) and the oxygen concentration increases toward positive val
Not all chemical systems have the autocorrection property. Appending the extra reacti

r1)NO+0 % NO, (ki1 = 1.0E —8) (7.3)

leads to a noncorrecting kinetic scheme, as (7.3) will continue to destroy NO and O e
when their concentrations become negative.

The extended system (7.1)—(7.3) with initial values of Table | was integrated with t
positivity-favoring method Ros2. Table Il shows the solution errors (7.2) versus the s
size, the computational work (in Kflops), and overheads. Clearly, this noncorrecting s
tem is a more challenging computational problem: for fixed step sizes larger than 15 |
standard Ros2 is unstable, while clipping introduces significant errors. The projected
the stabilized solutions show good accuracies even at very large time steps. Errors in
and NQ are present at the night-to-day transitions, but they do not accumulate intime. -
invariant errors are also very small. For step sizes of 6 min or less the methods give sin
results. As expected, the overheads are larger in the large-step regime.

Additional experiments (not shown here) were performed with a variable-step versior
Ros2. It produced accurate solutions but the computational costs were much higher tha
fixed-step costs for medium-to-modest accuracy. Projection and stabilization did not s
to improve significantly the performance of the standard variable-step algorithm; howey
some improvements were noticed when a minimal ktep1 min was imposed.

Lumping does not affect positivity or stability. We integrated the lower dimension
equivalent system obtained by substituting?P= b; — [0] — 3[03] — 2[0,] — [NO] —
2[NO;] and [NO] = b, — [NO3]. There still are negative concentrations produced, and tt
behavior is similar to that of the nonlumped system.

TABLE 11l
The Work (Kflops) and Overhead versus Solution Accuracy for Integrating the Extended
Stratospheric Problem (7.1)—(7.3) with Ros2 for Standard, Clipped, Projected, and Stabi-
lized Versions

Standard w/Clipping wi/Projection wi/Stabilization
Ros2
h(min)  Work Error Work Error Work Error Work Error
48 — — 189 5.2E+40 222 (17%) 1.4B-3 204 (8%) 1.48-3
24 — — 378 5.2E-1 412 (9%) 2.1E-4 393 (4%) 2.1E-4
12 756 1.6E-4 756 4.0E-2 791 (5%) 1.5E-4 773 (2%) 1.5E-4
6 1513 4.48-5 1513 45E-5 1553 (3%) 458-5 1525 (1%) 4.58-5

3 3027 1.1&-5 3027 1.18-5 3067 (1%) 1.1E-5 3043 (0.5%) 1.12-5
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8. CONCLUSIONS

We presented two techniques that ensure mass conservation and positivity for the nul
ical solutions of chemical kinetic problems. The techniques are based on postproces
the next-step approximations given by linear-preserving methods, should negative con
trations develop.

Projection finds the nearest vector in the reaction simplex (2.6) by solving a que
ratic optimization problem. This optimal vector better approximates the true soluti
(Lemma 4.1). Consequently, projection is an unconditionally positive integration meth
with the same order of consistency as the underlying time-stepping scheme; in this sen
overcomes the barriers of [2]. In practice, the technique alleviates the step-size restrict
when higher order integration methods are used.

A less expensive alternative is the stabilization method. Although positivity is not gu
anteed, the overall behavior is very good and the solutions are similar to the ones obta
by optimal projection.

Both techniques have to be paired with a positivity-favorable numerical integratic
method, for example, Ros2 [15, 16]. Although such methods do not guarantee posi
ity, they seldom produce nonpositive results, which minimizes the overheads incurred
projection or stabilization.

Projection and stabilization yield better accuracies than clipping for large time steps. If
kinetic system self-corrects the negative concentrations, neither technique seems nece
For systems that are unstable at negative concentrations, projection and stabilization &
larger time steps than the standard integration.

In air-quality modeling, fixed-step integration plus clipping is a popular approach; hoy
ever, clipping adds nonphysical mass. Fixed-step plus simplex projection ensures posit
and mass balance; for medium-to-modest accuracy requirements this is more effective
variable step sizes. In addition, in a parallel implementation of an air-quality model fix
step sizes lead to a better load balance and increased overall efficiency.

An apparent disadvantage of the methods is that one has to compute the linear invari
explicitly. The linear invariants, however, can be automatically generated by speciali:
software that translates kinetic reactions into differential equations (e.g., KPP [4]).

APPENDIX: NUMERICAL INTEGRATION METHODS

The second-order backward differentiation formula BDF2 [6, Section IIl.1] is

2 4., 1
=Y ShEATL YT, Y= oyt - 2y (8.1)

Heret"t! =t" + h = t"~1 4 2h; for variable time steps the coefficients change. The ver
first step requires botia* andy?; the former is given, while the latter is obtained with one
backward Euler step.
The second-order Runge—Kutta method RK2 [10] is
Yy =y (L - y)ki + vke
ki =hf"+yh, y"+yko), (8.2)
ke =hft"+h y"+ 1 -yk + vk,

withy = 1—/2/2.
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For the following Rosenbrock methods the Jacobian malrix af (t, y)/dy and the
time partial derivativef; = 9f (t, y)/0t are evaluated dt=t". The Rodas3 method [12]
is third-order accurate and reads

Yy = y" + 2Ky + ks + Ka,

<ﬁ| —J>k1= f(t”,y”)+2ft,

(i| —J>k2= f(t”,y“)+%kl+%ft, (8.3)
(§| _J>k3: f(t”+h,y”+2k1)+%k1—%kz,

<i| —J>k4: f(t”+h,yn+2k1—k3)+%k1—%kz—gk&

The second-order Rosenbrock scheme Ros?2 [15, 16] is defined as
3 1
n+l= n —k —k
y y + 2y 1+ 2y 2,

1

— 1 —J)k
<J/h ) '

1

— 1 —-J)k
(Vh ) ’

with y = 1+ 1/4/2. The vectory” + (1/y )k is a consistent approximation &t and
was used to implement the error estimator in the variable step formulation. In [15, 16] it v
noted that Ros2 have favorable positivity properties, and the method is stable for nonlir
problems even with large fixed step sizes. It was also noted that Ros2 provides positive <
tions for the scalar problen® = —kCandC’ = —kC?,C(tp) > 0. A possible explanation
for the good observed behavior is that the transfer function of this method and its first t
derivatives are all nonnegative for any real, negative argumentii®., R (2), R’(z) > 0

for anyz < 0). In view of the theory developed in [2] this might reduce the negative value
and have a good influence on the positivity of solutions.

f(t", y") + yht, (8.4)

1 2
f(tn+ha yn+_kl) __kl_yhft’
Y vh
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